

Our range of coils

73

Copper/Aluminium with Heresite Coating

Manufacturing

Technical program

Standard Heatexchanger

Runaround coil

Change-Over and Evaporator/ Condensor for heat pump

Geometry

= Tubes $1 / 2^{\prime \prime}$

Fins
Fin type : corrugated
Tube spacing : $37.5 \times 32.48 \mathrm{~mm}$
Fin thickness

- 0.15 mm for fin spacing 1.8 to 4 mm (Aluminium)
- 0.1 for fin spacing 1.8 to 3 mm (Copper)

Standard fin spacing : 1.8-2.1-2.5-3 and 4 mm
Tubes
Standard : copper Ø12.7 (1/2") - thickness 0.35 mm

二 Tubes $5 / 8^{\prime \prime}$

Fins

Fin type : corrugated
Tube spacing : $50 \times 43.3 \mathrm{~mm}$

Thickness

-0.15 mm for fin spacing 1.8 to 3 mm
-0.2 mm for fin spacing 2.5 to 4 mm
-0.4 mm for fin spacing 2.5 to 6 mm
Standard fin spacing : $1.8-2.1-2.5-3-4-5$ and 6 mm TUBES

Standard : copper Ø15.87 (5/8") - thickness 0.4 mm Option : thicker copper : 0.75 and 0.89 mm .

Options:

Frame : galvanized steel, stainless steel, aluminium
Header : steel, copper, stainless steel
Fins : aluminium, copper, aluminium prepaint

Explanation of the code

S, Z for horizontal coils

- Diameter of header (Outlet)
- Diameter of header (Inlet)
- Number of Inlets
- Fin spacing (ex. : $25=2.5 \mathrm{~mm}$)
Number of rows
Number of Tubes by Row (NTR) Tube $5 / 8^{\prime \prime}$: finned height $=$ NTR $\times 50 \mathrm{~mm}$
Tube $1 / 2^{\prime \prime}:$ finned height $=$ NTR $\times 37.5 \mathrm{~mm}$
- Finned length
- Fluids : $\mathrm{E}=$ Water $-\mathrm{G}=$ Glycolized Water $-\mathrm{F}=$ Evaporating or Condensing Refrigerant $-\mathrm{H}=$ Thermal oil
- Fins material : A = Aluminium - C=Copper $-\mathrm{F}=$ Steel $-\mathrm{I}=$ Stainless Steel
Tubes material : C=Copper $-\mathrm{F}=$ Steel $-\mathrm{I}=$ Stainless Steel
Use : C = Heating - R = Cooling
- Type of coil : $B=$ Coil $5 / 8^{\prime \prime}$ for air handing unit $-X=$ Coil $1 / 2^{\prime \prime}$ for air handing unit
$\mathrm{G}=$ Coil $5 / 8^{\prime \prime}$ for ducts $-\mathrm{Y}=$ Coil $1 / 2^{\prime \prime}$ for ducts $-\mathrm{T}=$ Heatpipe $-\mathrm{S}=$ Coil without frame
H = High Efficiency Twin Coils $1 / 2^{\prime \prime}-I=$ High Efficiency Twin Coils $5 / 8^{\prime \prime}$
changer Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Hea

changer Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Hea Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchanger Heatexchange changer Heatexchanger Heatexchanger Heatewc Heatex/ Heatexchanger Heatexchans \qquad mancontact
 langer Heatexchanger He \qquad
Z.I. les Plenesses Rue du Progrès 16 B-4821 DISON
Tel. : +32 (0)87 394930 Fax : +32 (0)87 394931 E-mail : btn@btnsa.com www.btnsa.com

